March 18, 2014 Volume 10 Issue 11

Electrical/Electronic News & Products

Designfax weekly eMagazine

Subscribe Today!
image of Designfax newsletter

Archives

View Archives

Partners

Manufacturing Center
Product Spotlight

Modern Applications News
Metalworking Ideas For
Today's Job Shops

Tooling and Production
Strategies for large
metalworking plants

Conductive Brush Ring overcomes current leakage in EV powertrains

SKF's new Conductive Brush Ring paves the way to greater reliability and longer life in high-performance electric vehicle powertrain systems. Using pure carbon fiber bristles, it provides a reliable electrical connection between an EV eAxle rotor shaft and its housing. When used in combination with SKF Hybrid ceramic ball bearings, it helps to alleviate parasitic current effects that can lead to premature failure in bearings and other components. Available in different configurations for wet (oil-lubricated) motor designs -- and soon for dry (sealed) applications.
Learn more.


Intro to reed switches, magnets, magnetic fields

This brief introductory video on the DigiKey site offers tips for engineers designing with reed switches. Dr. Stephen Day, Ph.D. from Coto Technology gives a solid overview on reed switches -- complete with real-world application examples -- and a detailed explanation of how they react to magnetic fields.
View the video.


Bi-color LEDs to light up your designs

Created with engineers and OEMs in mind, SpectraBright Series SMD RGB and Bi-Color LEDs from Visual Communi-cations Company (VCC) deliver efficiency, design flexibility, and control for devices in a range of industries, including mil-aero, automated guided vehicles, EV charging stations, industrial, telecom, IoT/smart home, and medical. These 50,000-hr bi-color and RGB options save money and space on the HMI, communicating two or three operating modes in a single component.
Learn more.


All about slip rings: How they work and their uses

Rotary Systems has put together a really nice basic primer on slip rings -- electrical collectors that carry a current from a stationary wire into a rotating device. Common uses are for power, proximity switches, strain gauges, video, and Ethernet signal transmission. This introduction also covers how to specify, assembly types, and interface requirements. Rotary Systems also manufactures rotary unions for fluid applications.
Read the overview.


Seifert thermoelectric coolers from AutomationDirect

Automation-Direct has added new high-quality and efficient stainless steel Seifert 340 BTU/H thermoelectric coolers with 120-V and 230-V power options. Thermoelectric coolers from Seifert use the Peltier Effect to create a temperature difference between the internal and ambient heat sinks, making internal air cooler while dissipating heat into the external environment. Fans assist the convective heat transfer from the heat sinks, which are optimized for maximum flow.
Learn more.


EMI shielding honeycomb air vent panel design

Learn from the engineering experts at Parker how honeycomb air vent panels are used to help cool electronics with airflow while maintaining electromagnetic interference (EMI) shielding. Topics include: design features, cell size and thickness, platings and coatings, and a stacked design called OMNI CELL construction. These vents can be incorporated into enclosures where EMI radiation and susceptibility is a concern or where heat dissipation is necessary. Lots of good info.
Read the Parker blog.


What is 3D-MID? Molded parts with integrated electronics from HARTING

3D-MID (three-dimensional mechatronic integrated devices) technology combines electronic and mechanical functionalities into a single, 3D component. It replaces the traditional printed circuit board and opens up many new opportunities. It takes injection-molded parts and uses laser-direct structuring to etch areas of conductor structures, which are filled with a copper plating process to create very precise electronic circuits. HARTING, the technology's developer, says it's "Like a PCB, but 3D." Tons of possibilities.
View the video.


Loss-free conversion of 3D/CAD data

CT CoreTech-nologie has further developed its state-of-the-art CAD converter 3D_Evolution and is now introducing native interfaces for reading Solidedge and writing Nx and Solidworks files. It supports a wide range of formats such as Catia, Nx, Creo, Solidworks, Solidedge, Inventor, Step, and Jt, facilitating smooth interoperability between different systems and collaboration for engineers and designers in development environments with different CAD systems.
Learn more.


Top 5 reasons for solder joint failure

Solder joint reliability is often a pain point in the design of an electronic system. According to Tyler Ferris at ANSYS, a wide variety of factors affect joint reliability, and any one of them can drastically reduce joint lifetime. Properly identifying and mitigating potential causes during the design and manufacturing process can prevent costly and difficult-to-solve problems later in a product lifecycle.
Read this informative ANSYS blog.


Advanced overtemp detection for EV battery packs

Littelfuse has introduced TTape, a ground-breaking over-temperature detection platform designed to transform the management of Li-ion battery systems. TTape helps vehicle systems monitor and manage premature cell aging effectively while reducing the risks associated with thermal runaway incidents. This solution is ideally suited for a wide range of applications, including automotive EV/HEVs, commercial vehicles, and energy storage systems.
Learn more.


Benchtop ionizer for hands-free static elimination

EXAIR's Varistat Benchtop Ionizer is the latest solution for neutralizing static on charged surfaces in industrial settings. Using ionizing technology, the Varistat provides a hands-free solution that requires no compressed air. Easily mounted on benchtops or machines, it is manually adjustable and perfect for processes needing comprehensive coverage such as part assembly, web cleaning, printing, and more.
Learn more.


LED light bars from AutomationDirect

Automation-Direct adds CCEA TRACK-ALPHA-PRO series LED light bars to expand their offering of industrial LED fixtures. Their rugged industrial-grade anodized aluminum construction makes TRACKALPHA-PRO ideal for use with medium to large-size industrial machine tools and for use in wet environments. These 120 VAC-rated, high-power LED lights provide intense, uniform lighting, with up to a 4,600-lumen output (100 lumens per watt). They come with a standard bracket mount that allows for angle adjustments. Optional TACLIP mounts (sold separately) provide for extra sturdy, vibration-resistant installations.
Learn more.


World's first metalens fisheye camera

2Pi Optics has begun commercial-ization of the first fisheye camera based on the company's proprietary metalens technology -- a breakthrough for electronics design engineers and product managers striving to miniaturize the tiny digital cameras used in advanced driver-assistance systems (ADAS), AR/VR, UAVs, robotics, and other industrial applications. This camera can operate at different wavelengths -- from visible, to near IR, to longer IR -- and is claimed to "outperform conventional refractive, wide-FOV optics in all areas: size, weight, performance, and cost."
Learn more.


Orbex offers two fiber optic rotary joint solutions

Orbex Group announces its 700 Series of fiber optic rotary joint (FORJ) assemblies, supporting either single or multi-mode operation ideal for high-speed digital transmission over long distances. Wavelengths available are 1,310 or 1,550 nm. Applications include marine cable reels, wind turbines, robotics, and high-def video transmission. Both options feature an outer diameter of 7 mm for installation in tight spaces. Construction includes a stainless steel housing.
Learn more.


Mini tunnel magneto-resistance effect sensors

Littelfuse has released its highly anticipated 54100 and 54140 mini Tunnel Magneto-Resistance (TMR) effect sensors, offering unmatched sensitivity and power efficiency. The key differentiator is their remarkable sensitivity and 100x improvement in power efficiency compared to Hall Effect sensors. They are well suited for applications in position and limit sensing, RPM measurement, brushless DC motor commutation, and more in various markets including appliances, home and building automation, and the industrial sectors.
Learn more.


Physicists celebrate the SQUID (superconducting quantum interference device) at 50

From humble beginnings in a series of accidental discoveries, SQUIDs have invaded and enhanced many areas of science and medicine, thanks, in part, to the National Institute of Standards and Technology (NIST).

SQUIDs -- short for superconducting quantum interference devices -- are the world's most sensitive magnetometers and powerful signal amplifiers, with broad applications ranging from medicine and mining to cosmology and materials analysis.

Micrograph of a SQUID amplifier, made at NIST in 2012, that is part of a circuit used to read signals from arrays of superconducting sensors. Small currents generated by the sensors are carried and amplified in the coils, which create magnetic fields detected by the SQUID (two small squares in the center of the image). [Credit: NIST]

 

 

 

 

Physicists from around the world celebrated the first week of March1 to mark the 50th anniversary of the first journal paper introducing the SQUID, published in February 1964.

Celebrants heard about the use of SQUIDS to measure brain activity in Finland, discover mineral deposits leading to a large silver mine in Australia, and detect faint light from the early moments of the universe from telescopes all over the world.

SQUIDs measure magnetic fields based on quantum properties created when a superconducting circuit loop, in which electricity flows without resistance, is interrupted with one or two short sections of resistive material. The current across the resistive section varies predictably, based on the strength of the external magnetic field, making the device an exquisitely sensitive detector of magnetic fields. Typically, SQUIDs need to be cooled to cryogenic temperatures below 4 kelvins (-269 deg C) with liquid helium.

The SQUID was invented at Ford Scientific Laboratories in the 1960s but was further developed at NIST (then called the National Bureau of Standards). James Zimmerman co-invented one type of SQUID (the RF-SQUID) and coined the term while at Ford, before joining NIST where he worked in the 1970s and 1980s.

Jim Zimmerman with a multi-hole RF-SQUID, a design concept he developed at NIST in the 1970s. [Credit: NIST]

 

 

One of his SQUIDs helped launch the field of biomagnetism -- the medical use of SQUIDs. The first magnetocardiogram (MCG) with a strong, low-noise signal was performed with a portable SQUID made by Zimmerman at NIST to measure the magnetic signal of his own heart.2 The experiment, performed at the Massachusetts Institute of Technology, was the first time a SQUID recorded a living signal, and launched a growing field today.

Among other advances at NIST, Zimmerman also made early SQUIDs for magnetoencephalography (MEG), which noninvasively measures magnetic fields produced by electrical activity in the brain. In 1987, Zimmerman and NIST colleagues used a then-new high-temperature superconductor to make the first RF-SQUID -- and probably the first superconducting electronic device of any kind -- to operate at the temperature of liquid nitrogen, a relatively inexpensive and easily handled coolant.

Today, NIST remains a center of SQUID innovation. In addition to designing and making custom SQUIDs in a microfabrication facility, NIST researchers also invented a method for wiring hundreds of SQUID signal amplifiers together with large arrays of superconducting sensors. When used as amplifiers, SQUIDs measure the magnetic fields created in coils that carry and amplify very small currents generated by sensors.

For instance, SQUIDs made at NIST have been used to amplify sensor signals in more than 10 telescopes in North and South America, Hawaii, the South Pole, and elsewhere.3 NIST SQUIDs also are used in imaging of hidden threats4 and for X-ray materials analysis.

1The SQUID at 50: Impact and Future, Industrial Physics Forum at the American Physical Society March Meeting 2014, March 4, 2014, Denver, Colo.

2R.L. Kautz. Jim Zimmerman and the SQUID. IEEE Transactions on Applied Superconductivity, Vol. 11, No. 1, March 2001.

3For example, see the 2011 NIST Tech Beat article, "Powerful NIST Detectors on Hawaiian Telescope to Probe Origins of Stars, Planets and Galaxies," at www.nist.gov/pml/div686/scuba2-array.cfm and the 2013 NIST Tech Beat article, "NIST Goes to the End of the Earth for Measurement Science," at www.nist.gov/pml/div686/southpole-040313.cfm.

4See the 2013 NIST Tech Beat article, "NIST Unveils Prototype Video Imaging System for Remote Detection of Hidden Threats," at www.nist.gov/pml/div686/detection-093013.cfm.

Rate this article

[Physicists celebrate the SQUID (superconducting quantum interference device) at 50]

Very interesting, with information I can use
Interesting, with information I may use
Interesting, but not applicable to my operation
Not interesting or inaccurate

E-mail Address (required):

Comments:


Type the number:



Copyright © 2014 by Nelson Publishing, Inc. All rights reserved. Reproduction Prohibited.
View our terms of use and privacy policy